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Abstract. We find a general expression for the free energy of G(φ) = φ2k generalized two-dimensional (2D)
Yang-Mills theory in the strong (A > Ac) region for large N . We also show that in this region, the density
function of Young tableau of these models is a three-cut problem. In the specific φ6 model, we show that
the theory has a third order phase transition, like the φ2 (YM2) and φ4 models. We note problems for
cases where k ≥ 4, and at the end, examine the phase structure of the φ2 + gφ4 model for the g ≤ A/4
region.

1 Introduction

The pure 2D Yang-Mills theory (YM2) is defined by the
Lagrangian tr(F 2) on a compact Riemann surface. In an
equivalent formulation of this theory, one can use itr(BF )
+tr(B2) as the Lagrangian, where B is an auxiliary pseu-
do-scalar field in the adjoint representation of the gauge
group. Path integration over field B leaves an effective
Lagrangian of the form tr(F 2).

Pure YM2 theory, as applied to a compact Riemann
surface, is characterized by its invariance under area-pre-
serving diffeomorphism and its lack of propagating de-
grees of freedom. These properties are not unique to the
itr(BF ) + tr(B2) theory, but rather are shared by a wide
class of theories, called the generalized Yang-Mills theo-
ries (gYM2). These theories are defined by replacing the
tr(B2) term by an arbitrary class function Λ(B) ([10]).
Aside from those discussed in [1], there are at least two
reasons to study gYM2. The first is that the Wilson loop
vacuum expectation value of gYM2 obeys the famous area
law behaviour, ([11]), and this behaviour is a signal of con-
finement, one of the most important unsolved problems of
QCD. Second, the existence of the third-order phase tran-
sition in some of the gYM2 theories (one case is studied
in [5] and other examples will be studied in this paper) is
another indication for the equivalence of YM2 and gYM2
as a 2D counterpart of the theory of strong interaction.

The partition function of gYM2 has been calculated in
at least three ways: by regarding the generalized Yang-
Mills action as a perturbation of topological theory at
zero area ([10]); by following Migdal’s suggestion about
the local factor of plaquettes (it has been shown that this
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generalization satisfies the necessary requirements) ([1]);
and by a continuum approach, using the standard path
integral method ([11]). The gYM2 theories can be further
coupled to fermions, thus obtaining QCD2 and generalized
QCD2 theories ([1]). These theories have generated much
interest in recent years. Phase structure, string interpre-
tation and algebraic aspects of these theories are reviewed
in [2].

In this paper we explore the phase structure of the
gYM2 theories. An early study of the phase transition of
YM2 in the large-N limit on a lattice reveals a third-order
phase transition ([3]). The study of pure continuum YM2
for large N on a sphere yields a similar result ([4]). This
result is obtained by calculating free energy as a function
of the area of the sphere (A) and distinguishing between
the small- and large-area behaviour of this function. In [5],
the authors consider gYM2 for large N on a sphere and
find an exact expression for an arbitrary gYM2 theory
in the weak (A < Ac) region, where Ac is the critical
area. They also find a third-order phase transition for the
specific φ4 model.

In addition, we discuss the issue of phase transition for
a wider class of theories. In Sect. 2 we review the deriva-
tion of the free energy and density function in the weak
(A < Ac) region. In Sect. 3 we study the φ2k theories.
First, we show that the density function for these mod-
els has two maxima in the (A < Ac) region, like the φ4

model. This enables us to use the method in [5] to obtain
a general expression for free energy for these theories in
the strong (A > Ac) region. In Sect. 4, we compute the
free energy near the transition point for the specific φ6

model, show that this model also has a third-order phase
transition, and remark briefly on models where k ≥ 4. Fi-
nally, in Sect. 5, we study another class of models, namely
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the φ2+gφ4 models. If g ≤ A/4, then the density function
will have only one maximum at the origin. We show that
these models also undergo a third-order phase transition
in this domain.

2 Large-N behaviour of gYM2 at A < Ac

The partition function of the gYM2 on a sphere is [5]

Z =
∑

r

d2
re

−AΛ(r), (1)

where r is the irreducible representation of the gauge group,
dr is the dimension of the r-th representation, A is the area
of the sphere, and Λ(r) is

Λ(r) =
p∑

k=1

ak

Nk−1 Ck(r), (2)

in which Ck is the k-th Casimir of the group, and ak is
an arbitrary constant. We parametrize the representation
of the gauge group U(N) by n1 ≥ n2 ≥ · · · ≥ nN , where
ni is the length of the i-th row of the Young tableau. It is
found that

dr =
∏

1≤i<j≤N

(
1 +

ni − nj

j − i

)
,

and

Ck =
N∑

i=1

[(ni + N − i)k − (N − i)k]. (3)

To make the partition function (1) convergent, it is nec-
essary that p in (2) be even, and that ap > 0.

Now, following [4], one can write the partition func-
tion (1), for large N , as a path integral over continuous
parameters. We introduce the continuous function

φ(x) = −n(x) − 1 + x, (4)

where

0 ≤ x := i/N ≤ 1 and n(x) := ni/N. (5)

The partition function (1) then becomes

Z =
∫ ∏

0≤x≤1

dφ(x)eS[φ(x)], (6)

where

S(φ) = N2{−A

∫ 1

0
dxG[φ(x)]

+
∫ 1

0
dx

∫ 1

0
dy log|φ(x) − φ(y)| }, (7)

apart from an unimportant constant, and

G[φ] =
p∑

k=1

(−1)kakφk. (8)

Now we introduce the density

ρ[φ(x)] =
dx

dφ(x)
, (9)

where, for cases in which G is an even function, the nor-
malization condition for ρ is

∫ a

−a

ρ(λ)dλ = 1. (10)

The function ρ(z) in this case is ([5]),

ρ(z) =
√

a2 − z2

π
(11)

×
∞∑

n,q=0

(2n − 1)!!
2nn!(2n + q + 1)!

a2nzqg(2n+q+1)(0),

where

g(φ) =
A

2
G′(φ), (12)

and g(n) is the n-th derivative of g. Similarly, one can
express the normalization condition, (10), as

∞∑
n=0

(2n − 1)!!
2nn!(2n − 1)!

a2ng(2n−1)(0) = 1. (13)

Defining the free energy as

F := − 1
N2 lnZ, (14)

the derivative of this free energy with respect to the area
of the sphere is then

F ′(A) =
∫ 1

0
dx G[φ(x)] =

∫ a

−a

dλ G(λ)ρ(λ). (15)

The condition n1 ≥ n2 ≥ · · · ≥ nN imposes the following
condition on the density ρ(λ):

ρ(λ) ≤ 1. (16)

Thus, we first determine the parameter a from (13), then
we calculate F ′(A) from (15). Note that the above solu-
tion is valid in the weak (A < Ac) region, where Ac is
the critical area. If A > Ac, then the condition ρ ≤ 1 is
violated.
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3 The G(φ) = φ2k model

In order to study the behaviour of any model in the strong
(A > Ac) region, we need to know the explicit form of
the density ρ in the weak (A < Ac) region. From (11)
we can obtain ρ for any even function G(φ). However, in
this section we consider a simple case, namely the G(φ) =
φ2k model with arbitrary positive integer k. The density
function ρ in the weak region is

ρ(z) =
kA

π

√
a2 − z2

k−1∑
n=0

(2n − 1)!!
2nn!

a2nz2k−2n−2. (17)

The interesting point is that the above density function
has only one minimum at z = 0, and two maxima which
are symmetric with respect to the origin. To see this, no-
tice that setting the derivative of ρ equal to zero will yield
z = 0, and

f(y) = −1 +
k−2∑
n=0

(2n − 1)!!
2n+1(n + 1)!

y−(n+1) = 0, (18)

where y = z2/a2. Because all of the coefficients of y in
(18) are positive, the function f(y) is a monotonically de-
creasing function and has only one root, i.e., y0. Next,
expanding ρ near the origin, we obtain

ρ(z) =
kA

π

(2k − 3)!!
2k−1(k − 1)!

×a2k

(
1 +

2k − 1
2(2k − 3)

z2a−2 + · · ·
)

, (19)

thus, ρ′′(0) > 0. The origin is then a minimum. But near
the points z = ±a, the curve ρ(z) is concave downward;
consequently the points z

(±)
0 = ±a

√
y0 will correspond to

two symmetric maxima of the density. Therefore in the
strong region, all the φ2k models are three-cut problems.
The function F ′(A) for G(φ) = φ2k in the weak region is
([5]):

F ′
w(A) =

1
2kA

. (20)

Next, we study the strong (A > Ac) region. Following [5],
we use the following ansatz for ρ:

ρs(z) =

{
1, z ∈ [−b, −c]

⋃
[c, b] =: L′

ρ̃s(z), z ∈ [−a,−b]
⋃

[−c, c]
⋃

[b, a] =: L.

(21)

Then, if we define the function Hs(z) as in [6],

Hs(z) := P
∫ a

−a

dw
ρs(w)
z − w

, (22)

where P indicates the principal value of the integral, it has
the following expansion for large values of z:

Hs(z) =
1
z

+
1
z3

∫ a

−a

ρs(λ)λ2dλ

+ · · · +
1

z2k+1 F ′
s(A) + · · ·. (23)

Hence, one can obtain F ′
s(A) via expansion of Hs(z).

To calculate the function Hs(z), we follow the same
steps outlined in [5], and using some complex analysis
techniques ([7]), obtain the following result for φ2k model:

Hs(z) = kAz2k−1

−kAR(z)
∞∑

n,p,q=0

α(n, p, q)z2(k−n−p−q−2)

−2R(z)
∫ b

c

λdλ

(z2 − λ2)R(λ)
. (24)

where

α(n, p, q) =
(2n − 1)!!(2p − 1)!!(2q − 1)!!

2n+p+qn!p!q!
a2nb2pc2q, (25)

and

R(z) =
√

(z2 − a2)(z2 − b2)(z2 − c2). (26)

Now, we expand Hs(z)/R(z) and demand that it behaves
like 1/z4 for large values of z. It can be shown that the
coefficients for all positive powers of z in the above expan-
sion are equal to zero. Next, we calculate the coefficients
of 1/z2; this gives us

kA

∞∑
n,p,q=0

α(n, p, q) − 2
∫ b

c

λdλ

R(λ)
= 0, (27)

in which n + p + q = k − 1. By setting the coefficient of
1/z4 to one, we obtain

kA

∞∑
n,p,q=0

α(n, p, q) − 2
∫ b

c

λ3dλ

R(λ)
= 1, (28)

where n+p+ q = k. In the k = 2 case, the φ4 theory, (27)
and (28) reduce to

A(a2 + b2 + c2) = 2
∫ b

c

λdλ

R(λ)
, (29)

and

A

[
3
4
(a4 + b4 + c4) +

1
2
(a2b2 + b2c2 + c2a2)

]

−2
∫ b

c

λ3dλ

R(λ)
= 1, (30)

which are the same equations that were obtained in [5].
We can express the action in terms of ρs(z). If we max-

imize this action, along with the normalization condition,
(10), as a constraint, we obtain another equation. This
procedure is fully explained in [5,8]. The result is

kA
∑

n,p,q=0

∫ b

c

α(n, p, q)z2(k−n−p−q−2)R(z)dz

+ 2
∫ b

c

dz P
∫ b

c

R(z)λdλ

(z2 − λ2)R(λ)
= 0. (31)
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Note that there are three unknown parameters, a, b, and
c, in equations (27), (28), and (31).

To compute the function F ′
s(A), we start from the func-

tion Hs(z) directly. First we expand R(z):

R(z) = z3

√
(1 − a2

z2 )(1 − b2

z2 )(1 − c2

z2 )

= −z3
∞∑

n′,p′,q′=0

β(n′, p′, q′)z−2(n′+p′+q′), (32)

where

β(n, p, q) =
(2n − 3)!!(2p − 3)!!(2q − 3)!!

2n+p+qn!p!q!
a2nb2pc2q. (33)

Furthermore, we define (−3)!! = −1. If we substitute the
above expansion into (24), we obtain

Hs(z) = kAz2k−1 + kA (34)

×
∑

n,p,q,n′,p′,q′=0

α(n, p, q)β(n′, p′, q′)
z2(n+p+q−k)+2(n′+p′+q′)+1

+2
∞∑

n=0

∑
n′,p′,q′=0

β(n′, p′, q′)
z2(n+n′+p′+q′)−1

∫ b

c

λ2n+1dλ

R(λ)
.

From (23) we see that the coefficient of 1/z2k+1 in the
expansion of Hs(z) is F ′

s(A). Therefore, from (34) we get

F ′
s(A) = kA

∑
n,p,q,n′,p′,q′=0

α(n, p, q)β(n′, p′, q′)

+2
∑

n,n′,p′,q′=0

β(n′, p′, q′)
∫ b

c

λ2n+1dλ

R(λ)
. (35)

Additionally, in the first summation of (35) we have the
following conditions on the indices:

(n + p + q) + (n′ + p′ + q′) = 2k, (36a)

and
2k − 2n − 2p − 2q − 4 ≥ 0. (36b)

Condition (36a) appears due to the selection of a specific
power of z in the expansion, and condition (36b) is due to
complex integration. Furthermore, in the second summa-
tion we have the follwing condition on the indices:

n + (n′ + p′ + q′) = k + 1. (36c)

In this way, we find the explicit relation of the free energy
of the φ2k models. For the k = 2 case, our results agree
with those in [5].

4 The G(φ) = φ6 model

Applying the previous results, we will investigate carefully
the phase structure of the G(φ) = φ6 model. From (17)

we obtain the density ρ for this model in the weak region;
the result is

ρ(z) =
3A

π

(
3a4

8
+

a2z2

2
+ z4

)√
a2 − z2. (37)

From the normalization condition, (13), we obtain a =
(16/(15A))1/6. In addition, we see from (20) that F ′

w(A) =
1/(6A). This density function has a minimum at z=0, and
two maxima at z

(±)
0 = ±

(√√
3 + 1

)
a/2. At A = Ac, the

density function (37) is equal to one at z
(±)
0 . From this,

we find the critical area Ac:

Ac = π6

(
3125
10368

− 15625
√

3
93312

)
. (38)

For A > Ac, (37) is not valid. Next, we analyse this model
in the strong (A > Ac) region. Equations (27), (28), and
(31) in this case become (39), (40), and (41), respectively:

3A

[
3
8
(a4 + b4 + c4) +

1
4
(a2b2 + b2c2 + c2a2)

]

−2
∫ b

c

λdλ

R(λ)
= 0, (39)

3A
[ 5

16
(a6 + b6 + c6)

+
3
16

(a2b4 + a2c4 + b2a4 + b2c4 + c2a4 + c2b4)

+
1
8
a2b2c2

]
− 2

∫ b

c

λ3dλ

R(λ)
= 1, (40)

and

3A

∫ b

c

(
z2 +

a2 + b2 + c2

2

)
R(z)dz

+2
∫ b

c

dz P
∫ b

c

R(z)λdλ

(z2 − λ2)R(λ)
= 0. (41)

To study the structure of the phase transition, we must
consider the theory applied to a sphere with A = Ac + ε
area, where ε is an infinitesimal positive number. In this
region, following [5], we use the following change of vari-
ables:

c = s(1 − y),

b = s(1 + y), (42)

a = s

√
2
√

3 − 2 + e.

Note that these parameters are introduced so that at crit-
ical points, e and y are equal to zero and s is equal to z+

0 .
Now, expanding the equations (39), (40) and (41), we find
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As4(18 − 6
√

3) − π

ηs

+

(
As4

(
9
√

3
2

− 3

)
+

π

ηs

(
1
2

+
√

3
3

))
e

+

(
9As4

8
− π

ηs

(
7
8

+
√

3
2

))
e2

+

(
(9 + 3

√
3)As4 − π

ηs

(
9
4

+
4
√

3
3

))
y2

+

(
3As4

2
+

π

ηs

(
77

√
3

12
+

89
8

))
ey2

+

(
3As4 − π

ηs

(
5363
192

+
129

√
3

8

))
y4 = 0, (43)

and

(39
√

3 − 57)As6 − 1 − πs

η
(44)

+

(
(42 − 18

√
3)As6 +

πs

η

(
1
2

+
√

3
3

))
e

+

((
45

√
3

8
− 9

2

)
As6 − πs

η

(
7
8

+
√

3
2

))
e2

+
(

(33 + 3
√

3)As6 − πs

η

(
2
√

3 +
17
4

))
y2

+

((
3
2

+
9
√

3
2

)
As6 +

πs

η

(
35

√
3

4
+

121
8

))
ey2

+

(
(3

√
3 + 24)As6 − πs

η

(
199

√
3

8
+

8267
192

))
y4 = 0,

and

3(1 +
√

3)As5 − π

η

(
1
2

+
√

3
3

)

+

((
5
√

3
2

+ 6

)
As5 +

π

η

(
7
6

+
2
√

3
3

))
e

−
((

7
√

3
8

+
13
8

)
As5 +

π

η

(
5
2

+
13

√
3

9

))
e2

−
(

(2 + 4
√

3)As5 +
π

η

(
91

√
3

36
+

211
48

))
y2

+

((
25
2

+
15

√
3

2

)
As5 +

π

η

(
635
24

+
275

√
3

18

))
ey2

−
((

56
3

+
32

√
3

3

)

+
π

η

(
60673

√
3

1728
+

23353
384

))
y4 = 0. (45)

The parameter η =
√

2
√

3 − 3 is used for the sake of
brevity in the above formulas. We also have kept terms
up to order y4 or e2 (we will show that e is of order y2).
Next we obtain s from (43); the result is

s =
( π

A

) 1
5

(
12 + 7

√
3

648

) 1
10
[
1 −

(
1 +

√
3

8

)
e (46)

+

(
5
32

+
√

3
12

)
e2 +

(
1
4

+
√

3
6

)
y2

−
(

167
96

+
95

√
3

96

)
ey2 +

(
911
192

+
11

√
3

4

)
y4

]
.

Substituting s in (45) gives us

e =

(
5
√

3
2

− 1
2

)
y2 −

(
15
16

+
37

√
3

48

)
y4. (47)

So e is of order y2. Using (44), we obtain

y2 =

(
4
√

3
15

− 2
5

)
δ +

(
317
360

− 77
√

3
150

)
δ2, (48)

and

e =

(
11
5

− 17
√

3
15

)
δ +

(
8533

√
3

3600
− 14929

3600

)
δ2. (49)

The parameter δ is the reduced area, i.e., δ = (A−Ac)/Ac.
From (35), we find F ′

s(A); the result is

F ′
s(A) =

3A

1024

[
35(a12 + b12 + c12)

−12(a6b6 + a6c6 + b6c6)
+12a2b2c2(a4b2 + a4c2 + b4a2

+b4c2 + c4a2 + c4b2)
+14a4b4c4 − 2a2b2c2(a6 + b6 + c6)
−19(a8b4 + a8c4 + b8a4

+b8c4 + c8a4 + c8b4)
−10(a10b2 + a10c2 + b10a2 + b10c2

+c10a2 + c10b2)
]

+
[ 5

64
(a8 + b8 + c8)

− 1
16

(a6b2 + a6c2 + b6a2 + b6c2 + c6a2 + c6b2)

+
1
16

a2b2c2(a2 + b2 + c2)

− 1
32

(a4b4 + a4c4 + b4c4)
] ∫ b

c

λdλ

R(λ)
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+
1
8

[
a6 + b6 + c6

−(a2b4 + a2c4 + b2a4 + b2c4 + c2a4 + c2b4)

+2a2b2c2
] ∫ b

c

λ3dλ

R(λ)

+
1
4
[

a4 + b4 + c4 − 2(a2b2 + a2c2 + b2c2)
]

×
∫ b

c

λ5dλ

R(λ)
+ (a2 + b2 + c2)

∫ b

c

λ7dλ

R(λ)

−2
∫ b

c

λ9dλ

R(λ)
. (50)

To compute F ′
s(A), we express the parameters a, b and c

in terms of δ; after a lengthy calculation, (50) reduces to

F ′
s(A) =

1
6A

[
1 +

(
271

10800
+

1289
√

3
504000

)
δ2 + · · ·

]
.

(51)

If we compare this with F ′
w(A) (given in the begining of

this section), we find

F ′
s(A) − F ′

w(A)

=

(
271

64800
+

1289
√

3
3024000

)
1
Ac

(
A − Ac

Ac
)2 + · · · . (52)

Therefore, we have a third-order phase transition, which
is the same as the ordinary Y M2 ([4]) and the G(φ) = φ4

model ([5]). In principle, one could study other φ2k mod-
els in the same manner; however, while the k = 4 case can
be solved analytically, its expressions become too compli-
cated, and the k ≥ 5 case cannot be solved analytically.

5 The G(φ) = φ2 + gφ4 model

So far in our study of the phase transition for gY M2 theo-
ries, we have considered only those G(φ) that contained a
single term. In [9], the authors study the phase transition
of gY M2 on a closed surface of arbitrary genus with area
A. In particular, they investigate the G(φ) = φ2 + gφ3

model. However, their treatment is mostly qualitative. In
this section we consider a simple combination of φ2 and
φ4; namely, we study the G(φ) = φ2 + gφ4 model.

In the weak region we can obtain the density ρ from
(10); the result is

ρ(z) =
A

π

√
a2 − z2(1 + ga2 + 2gz2). (53)

The above density will have only one maximum at z = 0,
when

3ga2 ≤ 1. (54)

The normalization condition (13) yields

1
2
Aa2 +

3
4
gAa4 = 1. (55)

Using (55), condition (54) reduces to

g ≤ A/4. (56)

Therefore, if this condition is satisfied, we will have a two-
cut problem in the A > Ac areas. Here after, we restrict
ourselves to this region (condition (56)).

Using (15), we determine the free energy of this model:

F ′
w(A) =

1
8
a4A +

5
16

ga6A +
9
64

g2a8A. (57)

To study this model in the strong (A > Ac) region, we use
the following ansatz for ρ ([4]):

ρs(z) =

{
1, z ∈ [−b, b]
ρ̃s(z), z ∈ [−a,−b]

⋃
[b, a]

. (58)

Using complex analysis ([4,5,6]), we obtain the function
Hs(z), defined using (22); the result is

Hs(z) = Az + 2gAz3 −
√

(z2 − a2)(z2 − b2)

×
[
2gAz +

∫ b

−b

dλ

(z − λ)U(λ)

]
, (59)

where

U(λ) =
√

(a2 − λ2)(b2 − λ2). (60)

Recalling (22), we see that Hs(z) should behave as 1/z
for large z. Therefore the coefficient of z in (59) must be
equal to zero,

A + gAM −
∫ b

−b

dλ

U(λ)
= 0, (61)

and the coefficient of 1/z must be equal to 1:

1
2
MA + gA

(
3
4
M2 − N

)
−
∫ b

−b

λ2dλ

U(λ)
= 1. (62)

In the above relations, M = a2 + b2 and N = a2b2. The
two unknown parameters a and b can be determined from
these two equations.

Using equations (15), (22) and (59), we obtain the fol-
lowing expression for free energy:

F ′
s(A) =

(
1
8
M2 − 1

2
N

)∫ b

−b

dλ

U(λ)

+
1
2
M

∫ b

−b

λ2dλ

U(λ)
−
∫ b

−b

λ4dλ

U(λ)

+g
[(

−1
4
MN +

1
16

M3
)∫ b

−b

dλ

U(λ)

+
(

1
8
M2 − 1

2
N

)∫ b

−b

λ2dλ

U(λ)

+
1
2
M

∫ b

−b

λ4dλ

U(λ)
−
∫ b

−b

λ6dλ

U(λ)

]
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−2gA

(
1
4
MN − 1

16
M3
)

−2g2A

(
−1

8
N2 +

3
16

M2N − 5
128

M4
)

. (63)

In order to investigate the phase transition, we use the
following change of variables:

a = ac(1 − h), (64)

and (
b

a

)2

= k. (65)

The parameter ac is the value of a at the critical point,
and h and k are equal to zero at this point. At the critical
point, the normalization condition (55) becomes

1
2
Acac

2 +
3
4
gAcac

4 = 1. (66)

At A = Ac, ρ(0) is equal to one, yielding

acAc + gAcac
3 = π. (67)

In order to study the phase transition of this model, we
limit ourselves to the small values of g (where g � 1).
Using (66) and (67), Ac and ac then become

Ac =
π2

2
− g +

4g2

π2 + · · · , (68)

and

ac =
2
π

− 4g

π3 +
40g2

π5 + · · · . (69)

Now we follow the same steps used in Sect. 4. First, we
expand equations (61) and (62) in terms of h and k, and
solve these equations for h and k. The results, up to order
δ2, are

h = (
1
2

− 3
2

g

Ac
+

27
2

g2

A2
c

)δ

+(−5
8

+
7
4

g

Ac
− 287

8
g2

A2
c

)δ2 + · · · , (70)

and

k = (2 + 14
g

Ac
+ 42

g2

A2
c

)δ

+(−7
4

− 93
2

g

Ac
+

283
4

g2

A2
c

)δ2 + · · · . (71)

Second, we find F ′
s(A) using equation (63). The result is

F ′
s(A) =

1
A

{1
2

− 1
2

g

A
+

9
4

g2

A2

+
(

1 + 3
g

A
+ 85

g2

A2

)
δ2 + · · ·

}
. (72)

This relation is true only up to order g2 and δ2. To com-
pare (72) with F ′(A) in the weak region, we first note that
a2, up to order g2, is (from (55))

a2 =
2
A

(
1 − 3

g

A
+ 18

g2

A2

)
, (73)

and from this, F ′
w(A) becomes (from (57)):

F ′
w(A) =

1
A

(
1
2

− 1
2

g

A
+

9
4

g2

A2

)
. (74)

Therefore

F ′
s(A) − F ′

w(A)

=
1
Ac

(
1 + 3

g

Ac
+ 85

g2

A2
c

)(
A − Ac

Ac

)2

+ · · · . (75)

This shows that the G(φ) = φ2 + gφ4 model in g < A/4
region also has a third-order phase transition. Also note
that at g = 0, (75) reduces to

F ′
s(A) − F ′

w(A) =
2
π2

(
A − Ac

Ac

)2

+ · · · , (76)

which is the same relation obtained in [4] for the ordinary
2-dimensional Yang-Mills theory.

Finally, it should be noted that for g > A/4, the den-
sity function ρ in (53) has two symmetric maxima in the
weak (A < Ac) region. This gives us a three-cut problem
and the above perturbative calculation is not possible.
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